eHMCOKE: an enhanced overlapping clustering algorithm for data analysis

Author:

Danganan Alvincent E.,De Los Reyes Edjie Malonzo

Abstract

Improved multi-cluster overlapping k-means extension (IMCOKE) uses median absolute deviation (MAD) in detecting outliers in datasets makes the algorithm more effective with regards to overlapping clustering. Nevertheless, analysis of the applied MAD positioning was not considered. In this paper, the incorporation of MAD used to detect outliers in the datasets was analyzed to determine the appropriate position in identifying the outlier before applying it in the clustering application. And the assumption of the study was the size of the cluster and cluster that are close to each other can led to a higher runtime performance in terms of overlapping clusters. Therefore, additional parameters such as radius of clusters and distance between clusters are added measurements in the algorithm procedures. Evaluation was done through experimentations using synthetic and real datasets. The performance of the eHMCOKE was evaluated via F1-measure criterion, speed and percentage of improvement. Evaluation results revealed that the eHMCOKE takes less time to discover overlap clusters with an improvement rate of 22% and achieved the best performance of 91.5% accuracy rate via F1-measure in identifying overlapping clusters over the IMCOKE algorithm. These results proved that the eHMCOKE significantly outruns the IMCOKE algorithm on mosts of the test conducted.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Overlapping Granular Clustering: Application in Fuzzy Rule-Based Classification;Lecture Notes in Networks and Systems;2024

2. Design of English Translation Intelligent Recognition System Based on Data Analysis Algorithm;2022 European Conference on Natural Language Processing and Information Retrieval (ECNLPIR);2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3