Author:
Ahmed Abed Issa,Mohammed Ali May,Abood Abdul Kadhim Afrah
Abstract
In this paper the benchmarking functions are used to evaluate and check the particle swarm optimization (PSO) algorithm. However, the functions utilized have two dimension but they selected with different difficulty and with different models. In order to prove capability of PSO, it is compared with genetic algorithm (GA). Hence, the two algorithms are compared in terms of objective functions and the standard deviation. Different runs have been taken to get convincing results and the parameters are chosen properly where the Matlab software is used. Where the suggested algorithm can solve different engineering problems with different dimension and outperform the others in term of accuracy and speed of convergence.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献