Physical activity prediction using fitness data: Challenges and issues

Author:

Zakariya Nur Zarna Elya,Rosli Marshima Mohd

Abstract

In the new healthcare transformations, individuals are encourage to maintain healthy life based on their food diet and physical activity routine to avoid risk of serious disease. One of the recent healthcare technologies to support self health monitoring is wearable device that allow individual play active role on their own healthcare. However, there is still questions in terms of the accuracy of wearable data for recommending physical activity due to enormous fitness data generated by wearable devices. In this study, we conducted a literature review on machine learning techniques to predict suitable physical activities based on personal context and fitness data. We categorize and structure the research evidence that has been publish in the area of machine learning techniques for predicting physical activities using fitness data. We found 10 different models in Behavior Change Technique (BCT) and we selected two suitable models which are Fogg Behavior Model (FBM) and Trans-theoretical Behavior Model (TTM) for predicting physical activity using fitness data. We proposed a conceptual framework which consists of personal fitness data, combination of TTM and FBM to predict the suitable physical activity based on personal context. This study will provide new insights in software development of healthcare technologies to support personalization of individuals in managing their own health.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3