Modeling and analysis: power injection model approach for high performance of electrical distribution networks

Author:

Abdulelah Baraa JalilORCID,Ismail Mohammed Al-Mashhadany YousifORCID,Algburi Sameer,Ulutagay Gozde

Abstract

The generation of electrical energy varies depending on the needs of the user, initial requirements, capacity, intended use, waste generation, and economic efficiency. In order to meet the challenges of the proposed overvoltage of the presented system, it is possible to use the solar collectors and profit from them economically through smart grid smart control systems. The mathematical model with four main parts was created: simulation, correlation, and evaluation according to the solar program set of photovoltaic solar modules, maximum power point tracking (MPPT), an adaptive neuro-fuzzy inference system (ANFIS) controller, and 600-volt electric network. Then in this phase, the investigation of the effects on the network on the basis of the output power with the coincidence of radiation and the effect of temperature in the network is carried out. An analysis was carried out to evaluate the impact of these fundamental limitations in practical application. In this section, the simulation of the proposed system is discussed. The block diagram of the developed system is presented in the last part. The proposed system was assessed from the Matlab simulation tapes and graphs for each part of the system, and the results of the overall system simulation were taken into account.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3