Diabetic analytics: proposed conceptual data mining approaches in type 2 diabetes dataset

Author:

Diwan Alalwan Sinan Adnan

Abstract

<p><span>Diabetes is a fast spreading illness, which makes to worry millions of people around the globe. The people affected by type-2 diabetes are rapidly increasing and there are no effective diagnostic systems to control the diabetics. As per global health statistics, in western countries, population effected by type 2 diabetics are higher in rate and cost factor for treatment is increasing. There are no effective methods to eradicate the diabetes and it leads to carry out an investigative study on this disease. In existing reviews, researchers are using data analysis approaches to link the cause for diabetes with the patients based on the diet, life style, inheritance details, age factor, medical history, etc. to identify the root cause of the problem. By having multiple key factors and historical datasets, there are some data mining tools were developed, to generate new rules on the root cause of the disease and discover new knowledge from the past data’s, but the accuracy was not promising. The main objective of this paper is to carry out a detail literature review and design a conceptual data mining method at initial stage and implement it to improve the result accuracy compared to other classifiers. <br /> In this research, two data-mining algorithm were proposed at conceptual level: Self Organizing Map (SOM) and Random Forest Algorithm, which is applied on adult population datasets. The data set used for this research are from UCI machine Learning Repository: Diabetes Dataset. In this paper, <br /> data mining algorithms were discussed and implementation results were evaluated. Based on the result performance evaluation, Self-organizing maps have performed better compared to the Random Forest and other data mining algorithms such as naïve Bayes, decision tree, SVM and MLP for diagnosing the diabetes with better accuracy. In future, once system is implemented, <br /> it can be integrated with diabetic detector device for faster diagnosis of TYPE 2 diabetes disease.</span></p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3