Author:
Thilahar C. Rajendra,R. Sivaramakrishnan
Abstract
In this paper, a new approach for implementing an Augmented Reality system by applying fuzzy genetic neural networks is proposed. It consists of two components namely feature selection and classification modules. For feature detection, extraction and selection, the proposed model uses a fuzzy logic based incremental feature selection algorithm which has been proposed in this work in order to recognize the important features from 3D images. Moreover, this paper explains the implementation and results of the proposed algorithms for an Augmented Reality system using image recognition, feature extraction, feature selection and classification by considering the global and local features of the images. For this purpose, we propose a three layer fuzzy neural network that has been implemented based on weight adjustments using fuzzy rules in the convolutional neural networks with genetic algorithm for effective optimization of rules. The classification algorithm is also based on fuzzy neuro-genetic approach which consists of two phases namely Training phase and testing phase. During the training phase, rules are formed based on objects and these rules are applied during the testing phase for recognizing the objects which can be used in robotics for effective object recognition. From the experiments conducted in this work, it is proved that the proposed model is more accurate in 3D <br /> object recognition.
Publisher
Institute of Advanced Engineering and Science
Subject
General Agricultural and Biological Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献