System on Chip Based RTC in Power Electronics

Author:

Dorothy R.,T. Sasilatha

Abstract

Current control systems and emulation systems (Hardware-in-the-Loop, HIL or Processor-in-the-Loop, PIL) for high-end power-electronic applications often consist of numerous components and interlinking busses: a micro controller for communication and high level control, a DSP for real-time control, an FPGA section for fast parallel actions and data acquisition, multiport RAM structures or bus systems as interconnecting structure. System-on-Chip (SoC) combines many of these functions on a single die. This gives the advantage of space reduction combined with cost reduction and very fast internal communication. Such systems become very relevant for research and also for industrial applications. The SoC used here as an example combines a Dual-Core ARM 9 hard processor system (HPS) and an FPGA, including fast interlinks between these components. SoC systems require careful software and firmware concepts to provide real-time control and emulation capability. This paper demonstrates an optimal way to use the resources of the SoC and discusses challenges caused by the internal structure of SoC. The key idea is to use asymmetric multiprocessing: One core uses a bare-metal operating system for hard real time. The other core runs a “real-time” Linux for service functions and communication. The FPGA is used for flexible process-oriented interfaces (A/D, D/A, switching signals), quasi-hard-wired protection and the precise timing of the real-time control cycle. This way of implementation is generally known and sometimes even suggested–but to the knowledge of the author’s seldomly implemented and documented in the context of demanding real-time control or emulation. The paper details the way of implementation, including process interfaces, and discusses the advantages and disadvantages of the chosen concept. Measurement results demonstrate the properties of the solution.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of Hybrid Converter for Marine Applications;European Journal of Natural Sciences and Medicine;2022-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3