Author:
Poojary Ramaprasad,Raina Roma,Kumar Mondal Amit
Abstract
<span id="docs-internal-guid-cdb76bbb-7fff-978d-961c-e21c41807064"><span>During the last few years, deep learning achieved remarkable results in the field of machine learning when used for computer vision tasks. Among many of its architectures, deep neural network-based architecture known as convolutional neural networks are recently used widely for image detection and classification. Although it is a great tool for computer vision tasks, it demands a large amount of training data to yield high performance. In this paper, the data augmentation method is proposed to overcome the challenges faced due to a lack of insufficient training data. To analyze the effect of data augmentation, the proposed method uses two convolutional neural network architectures. To minimize the training time without compromising accuracy, models are built by fine-tuning pre-trained networks VGG16 and ResNet50. To evaluate the performance of the models, loss functions and accuracies are used. Proposed models are constructed using Keras deep learning framework and models are trained on a custom dataset created from Kaggle CAT vs DOG database. Experimental results showed that both the models achieved better test accuracy when data augmentation is employed, and model constructed using ResNet50 outperformed VGG16 based model with a test accuracy of 90% with data augmentation & 82% without data augmentation.</span></span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献