An efficient resource utilization technique for scheduling scientific workload in cloud computing environment

Author:

Sodinapalli Nagendra Prasad,Kulkarni Subhash,Sharief Nawaz Ahmed,Venkatareddy Prasanth

Abstract

<span lang="EN-US">Recently, number of data intensive workflow have been generated with growth of internet of things (IoT’s) technologies. Heterogeneous cloud framework has been emphasized by existing methodologies for executing these data-intensive workflows. Efficient resource scheduling plays a very important role provisioning workload execution on Heterogeneous cloud framework. Building tradeoff model in meeting energy constraint and workload task deadline requirement is challenging. Recently, number of multi-objective-based workload scheduling aimed at minimizing power budget and meeting task deadline constraint. However, these models induce significant overhead when demand and number of processing core increases. For addressing research problem here, the workload is modelled by considering each sub-task require dynamic memory, cache, accessible slots, execution time, and I/O access requirement. Thus, for utilizing resource more efficiently better cache resource management is needed. Here efficient resource utilization (ERU) model is presented. The ERU model is designed to utilize cache resource more efficiently and reduce last level cache failure and meeting workload task deadline prerequisite. The ERU model is very efficient when compared with standard resource management methodology in terms of reducing execution time, power consumption, and energy consumption for execution scientific workloads on heterogeneous cloud platform.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3