An empirical study on machine learning algorithms for heart disease prediction

Author:

Assegie Tsehay AdmassuORCID,Rangarajan Prasanna KumarORCID,Kumar Napa KomalORCID,Vigneswari DhamodaranORCID

Abstract

In recent years, machine learning is attaining higher precision and accuracy in clinical heart disease dataset classification. However, literature shows that the quality of heart disease feature used for the training model has a significant impact on the outcome of the predictive model. Thus, this study focuses on exploring the impact of the quality of heart disease features on the performance of the machine learning model on heart disease prediction by employing recursive feature elimination with cross-validation (RFECV). Furthermore, the study explores heart disease features with a significant effect on model output. The dataset for experimentation is obtained from the University of California Irvine (UCI) machine learning dataset. The experiment is implemented using a support vector machine (SVM), logistic regression (LR), decision tree (DT), and random forest (RF) are employed. The performance of the SVM, LR, DT, and RF models. The result appears to prove that the quality of the feature significantly affects the performance of the model. Overall, the experiment proves that RF outperforms as compared to other algorithms. In conclusion, the predictive accuracy of 99.7% is achieved with RF.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SVM Based Risk Estimation in Heart Disease Prediction;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

2. Disease Prediction Based on Symptoms Using Ensemble and Hybrid Machine Learning Models;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

3. Enhancing Brain Tumor Diagnosis with Generative Adversarial Networks;2024 14th International Conference on Cloud Computing, Data Science & Engineering (Confluence);2024-01-18

4. Chronic Diseases Prediction Using Machine Learning With Data Preprocessing Handling: A Critical Review;IEEE Access;2024

5. An Analysis of Wild Fauna Trespassing Warning System using CNN and YOLO v3;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3