Abstract
<span lang="EN-US">Agriculture is a crucial element to build a strong economy, not only because of its importance in providing food, but also as a source of raw materials for industry as well as source of energy. Different diseases affect plants, which leads to decrease in productivity. In recent years, developments in computing technology and machine-learning algorithms (such as deep neural networks) in the field of agriculture have played a great role to face this problem by building early detection tools. In this paper, we propose an automatic plant disease classification based on a low complexity convolutional neural network (CNN) architecture, which leads to faster on-line classification. For the training process, we used more than one 57.000 tomato leaf images representing nine classes, taken under natural environment, and considered during training without background subtraction. The designed model achieves 97.04% classification accuracy and less than 0.2 error, which shows a high accuracy in distinguishing a disease from another.</span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献