A deep learning-based multimodal biometric system using score fusion

Author:

Medjahed Chahreddine,Rahmoun Abdellatif,Charrier Christophe,Mezzoudj Freha

Abstract

Recent trends in artificial intelligence tools-based biometrics have overwhelming attention to security matters. The hybrid approaches are motivated by the fact that they combine mutual strengths and they overcome their limitations. Such approaches are being applied to the fields of biomedical engineering. A biometric system uses behavioural or physiological characteristics to identify an individual. The fusion of two or more of these biometric unique characteristics contributes to improving the security and overcomes the drawbacks of unimodal biometric-based security systems. This work proposes efficent multimodal biometric systems based on matching score concatenation fusion of face, left and right palm prints. Multimodal biometric identification systems using convolutional neural networks (CNN) and k-nearest neighbors (KNN) are proposed and trained to recognize and identify individuals using multi-modal biometrics scores. Some popular biometrics benchmarks such as FEI face dataset and IITD palm print database are used as raw data to train the biometric systems to design a strong and secure verification/identification system. Experiments are performed on noisy datasets to evaluate the performance of the proposed model in extreme scenarios. Computer simulation results show that the CNN and KNN multi-modal biometric system outperforms most of the most popular up to date biometric verification techniques.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Security with Machine Learning-based Finger-Vein Biometric Authentication System;2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI);2024-01-18

2. Multimodal Biometric Reorganization System using Deep Learning Convolutional Neural Network;2022 International Conference on Edge Computing and Applications (ICECAA);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3