Classification of adult autistic spectrum disorder using machine learning approach

Author:

Mashudi Nurul Amirah,Ahmad Norulhusna,Noor Norliza Mohd

Abstract

Autism spectrum disorder (ASD) is a neurological-related disorder. Patients with ASD have poor social interaction and lack of communication that lead to restricted activities. Thus, early diagnosis with a reliable system is crucial as the symptoms may affect the patient’s entire lifetime. Machine learning approaches are an effective and efficient method for the prediction of ASD disease. The study mainly aims to achieve the accuracy of ASD classification using a variety of machine learning approaches. The dataset comprises 16 selected attributes that are inclusive of 703 patients and non-patients. The experiments are performed within the simulation environment and analyzed using the Waikato environment for knowledge analysis (WEKA) platform. Linear support vector machine (SVM), k-nearest neighbours (k-NN), J48, Bagging, Stacking, AdaBoost, and naïve bayes are the methods used to compute the prediction of ASD status on the subject using 3, 5, and 10-folds cross validation. The analysis is then computed to evaluate the accuracy, sensitivity, and specificity of the proposed methods. The comparative result between the machine learning approaches has shown that linear SVM, J48, Bagging, Stacking, and naïve bayes produce the highest accuracy at 100% with the lowest error rate.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Autism Spectrum Disorder Classification in Different Age Groups using Machine Learning Models;International Journal of Online and Biomedical Engineering (iJOE);2024-06-20

2. Comparative Exploration of Machine Learning Models for Enhanced Autism Detection;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

3. Identification of Autism Spectrum Disorder (ASD) in Adults through Various Machine Learning Algorithms;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

4. Modified Meta Heuristic BAT with ML Classifiers for Detection of Autism Spectrum Disorder;Biomolecules;2023-12-29

5. Analysis of Machine Learning and Deep Learning Techniques for Prediction of Psychiatric Disorders Using EEG Datasets;2023 International Conference on New Frontiers in Communication, Automation, Management and Security (ICCAMS);2023-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3