Segmentation atrioventricular septal defect by using convolutional neural networks based on U-NET architecture

Author:

Sapitri Ade Iriani,Nurmaini Siti,Sukemi Sukemi,Rachmatullah M. Naufal,Darmawahyuni Annisa

Abstract

Congenital heart disease often occurs, especially in infants and fetuses. Fetal image is one of the issues that can be related to the segmentation process. The fetal heart is an important indicator in the process of structural segmentation and functional assessment of congenital heart disease. This study is very challenging due to the fetal heart has a relatively unclear structural anatomical appearance, especially in the artifacts in ultrasound images. There are several types of congenital heart disease that often occurs namely in septal defects it consists of the atrial septal defect, ventricular septal defect, and atrioventricular septal defect. The process of identifying the standard of the heart, especially the fetus, can be identified with a 2D ultrasound video in the initial steps to diagnose congenital heart disease. The process of diagnosis of fetal heart standards can be seen from a variety of spaces, i.e., 4 chamber views. In this study, the standard semantic segmentation process of the fetal heart is abnormal and normal in terms of the perspective of 4 chamber views. The validation evaluation results obtained in this study amounted to 99.79% pixel accuracy, mean iou 96.10%, mean accuracy 97.82%, precision 96.41% recall 95.72% and F1 score 96.02%.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning-based Model Benchmarking of Glaucoma Segmentation Using a Novel Ibn Al-Haitham Fundus Image Dataset;2024 International Conference on Smart Computing, IoT and Machine Learning (SIML);2024-06-06

2. Identification of Congenital Heart Defects in Ultrasound Images using U-Net Segmentation;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

3. Yolact-based Approach for Real-Time Fetal Heart Segmentation;2023 International Conference on Data Science and Its Applications (ICoDSA);2023-08-09

4. Role of Four-Chamber Heart Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic Understanding;Informatics;2022-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3