Estimating PV models using multi-group salp swarm algorithm

Author:

Al-Shabi Mohammad,Ghenai Chaouki,Bettayeb Maamar,Faraz Ahmad Fahad,El Haj Assad Mamdouh

Abstract

<span id="docs-internal-guid-ea798321-7fff-3e0c-24d7-776c9b1165b3"><span>In this paper, a multi-group salp swarm algorithm (MGSSA) is presented for estimating the photovoltaic (PV) solar cell models. The SSA is a metaheuristic technique that mimics the social behavior of the salp. The salps work in a group that follow a certain leader. The leader approaches the food source and the rest follows it, hence resulting in slow convergence of SSA toward the solution. For several groups, the searching mechanism is going to be improved. In this work, a recently developed algorithm based on several salp groups is implemented to estimate the single-, double-, triple-, Quadruple-, and Quintuple-diode models of a PV solar cell. Six versions of MGSSA algorithms are developed with different chain numbers; one, two, four, six, eight and half number of the salps. The results are compared to the regular particle swarm optimization (PSO) and some of its newly developed forms. The results show that MGSSA has a faster convergence rate, and shorter settling time than SSA. Similar to the inspired actual salp chain, the leader is the most important member in the chain; the rest has less significant effect on the algorithm. Therefore, it is highly recommended to increase the number of leaders and reduce the chain length. Increasing the number of leaders (number of groups) can reduce the root mean squared error (RMSE) and maximum absolute error (MAE) by 50% of its value.</span></span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of capacitive deionization electrode features and materials using artificial intelligence-based modeling;Energy Harvesting and Storage: Materials, Devices, and Applications XIV;2024-06-07

2. Beyond conventional predictions: unfolding the ensemble Kalman filter's publications in renewable energy;Energy Harvesting and Storage: Materials, Devices, and Applications XIV;2024-06-07

3. Path planning for a UGV using Salp Swarm Algorithm;Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2024;2024-06-07

4. The confluence of PSO and MDO: a bibliometric perspective;Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI;2024-06-07

5. Parameter estimation of an unmanned aerial vehicle using dandelion algorithm;Unmanned Systems Technology XXVI;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3