Astrocytoma, ependymoma, and oligodendroglioma classification with deep convolutional neural network

Author:

Rahmat Romi FadillahORCID,Pratama Mhd FarisORCID,Purnamawati SarahORCID,Faza SharfinaORCID,Lubis Arif RidhoORCID,Al-Khowarizmi Al-KhowarizmiORCID,Lubis MuharmanORCID

Abstract

Glioma as one of the most common types of brain tumor in the world has three different classes based on its cell types. They are astrocytoma, ependymoma, oligodendroglioma, each has different characteristics depending on the location and malignance level. Radiological examination by medical personnel is still carried out manually using magnetic resonance imaging (MRI) medical imaging. Brain structure, size, and various forms of tumors increase the level of difficulty in classifying gliomas. It is advisable to apply a method that can conduct gliomas classification through medical images. The proposed methods were proposed for this study using deep convolutional neural network (DCNN) for classification with k-means segmentation and contrast enhancement. The results show the effectiveness of the proposed methods with an accuracy of 95.5%.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging U-Net Architecture for Accurate Localization in Brain Tumor Segmentation;2023 IEEE 9th Information Technology International Seminar (ITIS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3