A novel automated deep learning approach for Alzheimer's disease classification

Author:

Aparna MudiyalaORCID,Rao Battula SrinivasaORCID

Abstract

Alzheimer's disease is a degenerative brain illness, incurable and progressive. Globally for every two seconds, someone is affected by Alzheimer's disease. Alzheimer's disease in the elderly is difficult to diagnose due to the complexity of the brain structure. Its pixel intensity is similar and systematic distinction is necessary. Deep learning has inspired a lot of interest in recent years in tackling challenges in a variety of fields, including medical imaging. One of the drawbacks of deep learning approach is the inability to detect changes in functional connectivity in MCI (mild cognitive impairment) patients' functional brain networks. In this paper, we utilize deep features extracted from two pre-trained deep learning models to tackle this issue. The proposed models DenseNet121 and MobileNetV2 is used to perform the task of Alzheimer's disease multi-class classification. In this method, initially we increased 70 % of dataset and generated images by using CycleGAN (generative adversarial networks). We achieved 98.82% of accuracy with proposed models. It gives best results compared to existing models.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3