Effect of filter sizes on image classification in CNN: a case study on CFIR10 and Fashion-MNIST datasets

Author:

Khanday Owais Mujtaba,Dadvandipour Samad,Lone Mohd Aaqib

Abstract

<span style="font-size: 9pt; font-family: 'Times New Roman', serif;">Convolution neural networks (CNN or ConvNet), a deep neural network class inspired by biological processes, are immensely used for image classification or visual imagery. These networks need various parameters or attributes like number of filters, filter size, number of input channels, padding stride and dilation, for doing the required task. In this paper, we focused on the hyperparameter, i.e., filter size. Filter sizes come in various sizes like 3×3, 5×5, and 7×7. We varied the filter sizes and recorded their effects on the models' accuracy. The models' architecture is kept intact and only the filter sizes are varied. This gives a better understanding of the effect of filter sizes on image classification. CIFAR10 and FashionMNIST datasets are used for this study. Experimental results showed the accuracy is inversely proportional to the filter size. The accuracy using 3×3 filters on CIFAR10 and Fashion-MNIST is 73.04% and 93.68%, respectively.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3