Lung cancer classification using fuzzy c-means and fuzzy kernel C-Means based on CT scan image
-
Published:2021-06-01
Issue:2
Volume:10
Page:291
-
ISSN:2252-8938
-
Container-title:IAES International Journal of Artificial Intelligence (IJ-AI)
-
language:
-
Short-container-title:IJ-AI
Author:
Rustam Zuherman,Purwanto Aldi,Hartini Sri,Saragih Glori Stephani
Abstract
<span id="docs-internal-guid-94842888-7fff-2ae1-cd5c-026943b95b7f"><span>Cancer is one of the diseases with the highest mortality rate in the world. Cancer is a disease when abnormal cells grow out of control that can attack the body's organs side by side or spread to other organs. Lung cancer is a condition when malignant cells form in the lungs. To diagnose lung cancer can be done by taking x-ray images, CT scans, and lung tissue biopsy. In this modern era, technology is expected to help research in the field of health. Therefore, in this study feature extraction from CT images was used as data to classify lung cancer. We used CT scan image data from SPIE-AAPM Lung CT challenge 2015. Fuzzy C-Means and fuzzy kernel C-Means were used to classify the lung nodule from the patient into benign or malignant. Fuzzy C-Means is a soft clustering method that uses Euclidean distance to calculate the cluster center and membership matrix. Whereas fuzzy kernel C-Means uses kernel distance to calculate it. In addition, the support vector machine was used in another study to obtain 72% average AUC. Simulations were performed using different k-folds. The score showed fuzzy kernel C-Means had the highest accuracy of 74%, while fuzzy C-Means obtained 73% accuracy. </span></span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献