Artificial intelligence-based lead propensity prediction

Author:

Jadli AissamORCID,Hain Mustapha,Hasbaoui Anouar

Abstract

Lead propensity prediction is a data-driven method used to define the value of prospects, by assigning points to them based on their engagement with the business's digital channels, based on multiple key attributes correlating to their attraction to the proposed services or items. The resulting score is closely related to the financial worth of each lead and may be revealing its position in the buying cycle. The marketing teams can then focus on generated leads and prioritize the most prominent ones to improve the conversion rates, using the assigned score on the lead scoring step. The authors investigated using a combination of a data-driven approach and Artificial intelligence (AI) techniques for the lead-scoring process. The experimentation shows that the random forest (RF) is the most suitable model for this task with an accuracy score of 93.04% followed by the decision tree (DT) model of 91.47%. In contrast, when considering the training time, DT and logistic regression (LR) needed a shorter time to learn from the dataset while maintaining decent performances. In contrast, these models represent promising alternatives to the RF model especially in the case of a huge volume of transactions and prospects or in a big data context.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bridging Genomic Data and CRM;Advances in Marketing, Customer Relationship Management, and E-Services;2024-05-17

2. Business Drivers in Promoting Digital Detoxification;Advances in Marketing, Customer Relationship Management, and E-Services;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3