Author:
Shafik Wasswa,Matinkhah S. Motjaba,Afolabi Solagbade Saheed,Sanda Mamman Nur
Abstract
<p>The 5G technology is predicted to achieve the unoptimized millimeter Wave (mmWave) of 30-300 GHz bands. This unoptimized band because of the loss of mm-Wave bands, like path attenuation and propagation losses. Nonetheless, because of: (i) directional transmission paving way for beamforming to recompense for the path attenuation, and (ii) sophisticated placement concreteness of the base stations (BS) is the best alternative for array wireless communications in mmWave bands (that is to say 100-150 m). The advance in technology and innovation of unmanned aerial vehicles (UAVs) necessitates many opportunities and uncertainties. UAVs are agile and can fly all complexities if the terrains making ground robots unsuitable. The UAV may be managed either independently through aboard computers or distant controlled of a flight attendant on pulverized wireless communication links in our case 5G. Although a fast algorithm solved the problematic aspect of beam selection for 2-dimensional scenarios. This paper presents 3-dimensional scenarios for UAV. We modeled beam selection with environmental responsiveness in millimeter Wave UAV to accomplish close optimum assessments on the regular period through learning from the available situation.</p>
Publisher
Institute of Advanced Engineering and Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献