Real-time recognition of American sign language using long-short term memory neural network and hand detection

Author:

Mohamed Abdulhamied RehamORCID,M. Nasr MonaORCID,N. Abdul Kader SarahORCID

Abstract

Sign language recognition is very important for deaf and mute people because it has many facilities for them, it converts hand gestures into text or speech. It also helps deaf and mute people to communicate and express mutual feelings. This paper's goal is to estimate sign language using action detection by predicting what action is being demonstrated at any given time without forcing the user to wear any external devices. We captured user signs with a webcam. For example; if we signed “thank you”, it will take the entire set of frames for that action to determine what sign is being demonstrated. The long short-term memory (LSTM) model is used to produce a real-time sign language detection and prediction flow. We also applied dropout layers for both training and testing dataset to handle overfitting in deep learning models which made a good improvement for the final result accuracy. We achieved a 99.35% accuracy after training and implementing the model which allows the deaf and mute communicate more easily with society.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gesture Recognition in Sign Language Translation: A Deep Learning Approach;2024 International Conference on Integrated Circuits, Communication, and Computing Systems (ICIC3S);2024-06-08

2. Real Time Sign Language Translator for Deaf and Mute;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. A Four-Stage Mahalanobis-Distance-Based Method for Hand Posture Recognition;Applied Sciences;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3