A robust 4.0 dual-classifier for determining the internal condition of watermelons using YOLOv4-tiny and sensory

Author:

Adeniji Kehinde A.ORCID,Onibonoje Moses O.ORCID,Minevesho AgbajeORCID,Ejidokun TemitayoORCID,Omitola Olusegun O.

Abstract

<span>This study presents a robust internet of things (IoT) based approach to solve the challenge of sorting fruit (watermelons) either as a raw material or final product in fruit manufacturing lines. A real-time objection detection technique called you only look once (YOLO) was used in the features detection, extraction, and matching of watermelons. The hardware framework of the system was developed on an Arduino microprocessor which integrates the sensors and camera into the system. The accuracy of the developed classifier is about 88% with a loss of 0.3, with images captured automatically saved on a designated folder which makes the detection and classification of upcoming products in the production line more accurate. The classified watermelons were further categorized into two possible states of ripe or rotten condition with an accuracy rate of 85%-90% with the tested data. These data were sent to the cloud via the Wi-Fi module and can be accessed using the Things Speak website (which is an application programming interface (API) for data retrieval and storage via the internet). An easy download option was incorporated into the system to obtain data from predictions and the cloud to a designated comma separated values (CSV) file locally for documentation and reference.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3