A secure framework of blockchain technology using CNN long short-term memory hybrid deep learning model

Author:

Chandra Sekhar GillalaORCID,Rajendran ArunaORCID

Abstract

Generation Z is embracing blockchain technology, which is appropriate for the digital age. Internet of things (IoT) can benefit from blockchain technology IoT. The proliferation of IoT technology has led to breakthroughs in distributed system architecture. For the blockchain network to store, communicate, and exchange data, it needs a randomized data management system. This shows how difficult it may be to provide consistent and safe data replication in a distributed system, an issue blockchain technology may overcome. We need a solid prediction model that improves results. This article describes an innovative way to overcome the limitations of third-party transactions using Bitcoin. In this article, convolutional neural networks-long short term memory (CNN-LSTM) deep learning forecasting models are introduced. Convolutional layers help extract relevant data from instances. It has an long short-term memory (LSTM) layer, which lets it find long-and short term dependencies. The experiment's goal was to test the multivariate statistical model we suggested and compare its performance to well-established models. The addition of convolutional layers to a forecasting model may improve its accuracy, according to an experiment. The research shows that this strategy has a better chance of success and is more trustworthy than others.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in Generative AI: Exploring Fundamentals and Evolution;2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC);2024-05-02

2. Comparative Analysis of Deep Learning Algorithms Integrated with Blockchain for Flood Risk Management;2024 2nd International Conference on Networking and Communications (ICNWC);2024-04-02

3. Survey Convolution Neural Network based on Blockchain Technology;2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS);2023-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3