Author:
Daud K.,Abidin A. Farid,Ismail A. Paud,Hasan M. Daud A.,Shafie M. Affandi,Ismail A.
Abstract
The aim of this paper is to evaluate the implementation of windowing-based Continuous S-Transform (CST) techniques, namely, one-cycle and half-cycle windowing with Multi-layer Perception (MLP) Neural Network classifier. Both, the techniques and classifier are used to detect and classify the Power Quality Disturbances (PQDs) into one of possible classes, voltage sag, swell and interrupt disturbance signal. For realizing evaluation, we proposed the methodology that include the PQD generation, the signal detection using windowing-based CST, the features extraction from S-contour matrices, PQD classification using MLP classifier. Then, we perform two type of assessments. Firstly, the accuracy assessment of chosen classifier in relation to three different training algorithms. Secondly, the execution time comparison of the training algorithms. Based on assessment results, we outline several recommendations for future work.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献