Modelling volatility of Kuala Lumpur composite index (KLCI) using SV and garch models
-
Published:2019-03-01
Issue:3
Volume:13
Page:1087
-
ISSN:2502-4760
-
Container-title:Indonesian Journal of Electrical Engineering and Computer Science
-
language:
-
Short-container-title:IJEECS
Author:
Abdullah Ezatul Akma,Zahari Siti Meriam,Shariff S.Sarifah Radiah,Abdul Rahim Muhammad Asmu’i
Abstract
It is well-known that financial time series exhibits changing variance and this can have important consequences in formulating economic or financial decisions. In much recent evidence shows that volatility of financial assets is not constant, but rather that relatively volatile periods alternate with more tranquil ones. Thus, there are many opportunities to obtain forecasts of this time-varying risk. The paper presents the modelling volatility of the Kuala Lumpur Composite Index (KLCI) using SV and GARCH models. Thus, the aim of this study is to model the KLCI stock market using two models; Stochastic Volatility (SV) and Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH). This study employs an SV model with Bayesian approach and Markov Chain Monte Carlo (MCMC) sampler; and GARCH model with MLE estimator. The best model will be used to forecast the future volatility of stock returns. The study involves 971 daily observations of KLCI Closing price index, from 2 January 2008 to 10 November 2016, excluding public holidays. SV model is found to be the best based on the lowest RMSE and MAE values.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on the Forecast of Stock Price Index Based on BiLSTM-GRU;2022 Euro-Asia Conference on Frontiers of Computer Science and Information Technology (FCSIT);2022-12
2. Financial Analytics on Malaysia’s Equity Fund Performance and Its Timing Liquidity;Communications in Computer and Information Science;2021