State Feedback Linearization of a Non-linear Permanent Magnet Synchronous Motor Drive
-
Published:2016-03-01
Issue:3
Volume:1
Page:534
-
ISSN:2502-4760
-
Container-title:Indonesian Journal of Electrical Engineering and Computer Science
-
language:
-
Short-container-title:IJEECS
Author:
Ramana Pilla,Alice Mary Karlapudy,Surya Kalavathi Munagala
Abstract
Control system design for inverter fed drives previously used the classical transfer function approach for single-input singleoutput (SISO) systems. Proportional plus Integral (PI) controllers were designed for individual control loops.It is found that the transient response of a PI controller is slow and is improved by pole placement through state feedback. However, the effective gains of the PI controller are substantially decreased as a function of the increase of motor speed. A control system is generally characterized by the hierarchy of the control loops, where the outer loop controls the inner loops. The inner loops are designed to execute progressively faster. The speed controller (PI controller) processes the speed error and generates the reference torque. In the inner loop, firstly a non-linear controller is designed for the system by which the system nonlinearity is canceled using state or exact feedback linearization. In addition, a linear state feedback control law based on pole placement technique including the integral of output error (IOE) is used in order to achieve zero steady state error with respect to reference current specification, while at the same time improving the dynamic response.The proposed scheme has been validated through extensive simulation using MATLAB.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献