Conductive and Inductive Coupling between Faulted Power Lines and Buried Pipeline by Considering the Effect of Soil Structure

Author:

I. El Gayar Ali,Abdul-Malek Zulkurnain,Imran M Mohammed,Leong Wooi Chin,Fawzi Elshami Ibtihal

Abstract

<p>The AC total interference of faulted power lines to gas pipelines sharing the same right of way, which may pose a threat to operating personnel and equipment, was studied. The main advantage of this work is to determine the effects of different soil structures on the induced voltage for various soil resistivities. Two main approaches were used to compute the induced voltages, namely the method of moment (MOM), which is based on electromagnetic field theory, and the circuit based method, which uses the circuit grounding analysis to compute the conductive interference and the circuit based models to compute the inductive interference. A 10-km-long parallel pipeline-transmission line model was developed. The soil resistivity was varied, and the induced voltages obtained from both approaches were compared. Soil resistivity and soil structure are important parameters that affect the AC interference level. The results of the study show that the earth potentials and the metal GPRS are independent. Higher soil resistivity causes the tower ground resistance to increase, thus making the shield wire’s attractiveness as a fault current return path to increase, which in turn forces the induced net EMF and the cumulative GPR in the pipeline to reduce.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3