Abstract
<p>Communication by email is counted as a popular manner through which users can exchange information. The email could be abused by spammers to spread suspicious content to the Internet users. Thus, the need to an effective way to detect spam emails are becoming clear to keep this information safe from malicious access. Many methods have been developed to address such a problem. In this paper, a machine learning technique is applied to detect spam emails. In this technique, a detection system based on sequential minimal optimization (SMO) is built to classify emails into two categories: spam and non-spam (ham). Each email is represented by a set of features extracted from its textual content. A hybrid feature selection is developed to choose a subset of these features based on their importance in process of the detection. This subset is then input into the SMO algorithm to make the detection decision. The use of such a technique provides an efficient protective mechanism to control spams. The experimental results show that the performance of the proposed method is promising compared with the existing methods.</p>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献