Detecting abnormal movement of driver's head based on spatial-temporal features of video using deep neural network DNN

Author:

Al-Shakarchy Noor D.,Ali Israa Hadi

Abstract

<p>The development of tracking and surveillance devices makes extracting useful information efficiently. Head tracking is an efficient method to obtain then analyze trajectory data and make a decision based on the spatiotemporal information of videos. Many applications are based on head tracking such as diseases some diagnosis,  the gestures languages, and drowsiness detection and so on. Abnormal head movement detection can be achieved using spatial information based on a single image (one frame) at a time without considering the temporal information over time. In this paper, a new method based on multi-images is proposed to track head in order to detect abnormal head movement depending on spatiotemporal Feature using Deep Neural Network DNN that employed the 3-Dimensional Convolution Neural Networks 3D CNN. The proposed method extracts the spatial information as well as the temporal information available in a video then analysis this information to make the decision based on time series (sequences of frames); these time series provides the tracking to the head overtime to make the decision. The new dataset created and gathered to implement with the proposed system and called Normal Abnormal Head Movement Dataset (NAHM) video dataset. The new dataset provides different subjects with different conditions that give more efficiency in the implementation of the proposed system. The accuracy of the training set that achieves by the proposed system reach to 88% and of validation set reaches to 86%. The values of loss function reach to 0.3 for the training set and 0.4 for the validation set.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Person identification based on voice biometric using deep neural network;International Journal of Information Technology;2022-12-28

2. A Cloud-Based Model for Driver Drowsiness Detection and Prediction Based on Facial Expressions and Activities;International Journal of Cloud Applications and Computing;2022-11-18

3. Detection Covid-19 Infection of Lung CT Scan Slices Images Based on a Transfer Learning and GRAD-CAM;2022 International Conference on Data Science and Intelligent Computing (ICDSIC);2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3