An intelligent indian stock market forecasting system using LSTM deep learning

Author:

Kumar K,P. Gandhmal Dattatray

Abstract

<p><span>Stock market data is considered to be one of the chaotic data in nature. Analyzing the stock market and predicting the stock market has been the area of interest among the researchers for a long time. In this paper, we have stepped forward and used a deep learning algorithm with classification to predict the behavior of the stock market. LSTM deep learning algorithm is used with an optimization algorithm to formulate the hyperparameters. To further improve the accuracy of prediction the stock data is first given to a classification algorithm to reduce the number of input parameters. In this research Technical indicators are subjected to classification and deep LSTM algorithm which are both integrated to improve the accuracy of prediction. Deep LSTM hyperparameters are trained using the optimization algorithm. In this paper infosys and zensar stocks data is collected from the Indian stock market data i.e. both national stock exchange (NSE) and bombay stock exchange (BSE). The proposed approach is applied on infosys and zensar share values, the prediction accuracy obtained by employing this integrated approach of classification and LSTM has given a prominent value of MSE and RMSE as 1.034 and 1.002 respectively. </span></p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning techniques for stock market forecasting: Recent trends and challenges;2023 The 6th International Conference on Software Engineering and Information Management;2023-01-31

2. Forecasting Ability of Hybrid Methods on an Example of Stock Prices Forecast using ARIMA/LTSM;2022 15th International Conference Management of large-scale system development (MLSD);2022-09-26

3. Research on Interpretable Algorithm Based on Multi-step Problem Capability Estimation;2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC);2022-09

4. Modeling stock market using new hybrid intelligent method based on MFNN and IBHA;Soft Computing;2022-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3