Author:
Mahmood Mayyadah R.,Abdulrazaq Maiwan B.,Zeebaree Subhi R. M.,Ibrahim Abbas Kh.,Zebari Rizgar Ramadhan,Dino Hivi Ismat
Abstract
<p><span>Facial exprestion recognition as a recently developed method in computer vision is founded upon the idea of analazing the facial changes in which are witnessed due to emotional impacts on an individual. This paper provides a performance evaluation of a set of supervised classifiers used for facial expression recognition based on minimum features selected by chi-square. These features are the most iconic and influential ones that have tangible value for result dermination. The highest ranked six features are applied on six classifiers including multi-layer preceptron, support vector machine, decision tree, random forest, radial baised function, and k-nearest neioughbor to figure out the most accurate one when the minum number of features are utilized. This is done via analyzing and appraising the classifiers’ performance. CK+ is used as the research’s dataset. Random forest with the total accuracy ratio of 94.23 % is illustrated as the most accurate classifier amongst the rest. </span></p>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献