Hybrid concentrated photovoltaic thermal technology for domestic water heating

Author:

K.Panjwani M.,X. Yang S.,Xiao F.,H. Mangi K.,M. Larik R.,H. Mangi F.,Menghwar M.,Ansari J.,H. Ali K.

Abstract

There is an increasing reliance on renewable energy especially Solar Energy as the fossils are on the way to depletion.It offers an environmental friendly solution with an affordable comparative paradigm. Solar photovoltaic-thermal collectors have remained of the particular interest because of their higher overall efficiencies. Most of its applications related with solar hybrid PVT systems focuses more on electrical output rather than thermal output, and the contacting fluid is allowed to act as a coolant to assure that the solar cell operates in the ranges specified by the manufacturer to guarantee higher electrical efficiency. This ultimately allows fluid to retain higher temperature that could be utilized for meeting the heating demand of any residential household. First, the PVT analyses are performed over a system comprising of Fresnel-based Solar Module to allow higher irradiance to fall for relative higher conversion of efficiency and to achieve higher temperature ranges in the contacting fluid (water). The electrical parameters are compared, and a significant increase in the power ranges is concluded. Secondly, a simulated thermal structure of the heating tank is presented that utilises the heated water from the PVT system in meeting the heating demand of a residential household. When accounting all the electrical parameters, approximately 10% increase is noticed in power produced, and sufficient energy used for the traditional heating of water is retained.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3