Data mining, fuzzy AHP and TOPSIS for optimizing taxpayer supervision

Author:

Jupri M.,Sarno Riyanarto

Abstract

The achievement of accepting optimal tax need effective and efficient tax supervision can be achieved by classifying taxpayer compliance to tax regulations. Considering this issue, this paper proposes the classification of taxpayer compliance using data mining algorithms; i.e. C4.5, Support Vector Machine, K-Nearest Neighbor, Naive Bayes, and Multilayer Perceptron based on the compliance of taxpayer data. The taxpayer compliance can be classified into four classes, which are (1) formal and material compliant taxpayers, (2) formal compliant taxpayers, (3) material compliant taxpayers, and (4) formal and material non-compliant taxpayers. Furthermore, the results of data mining algorithms are compared by using Fuzzy AHP and TOPSIS to determine the best performance classification based on the criteria of Accuracy, F-Score, and Time required. Selection of the taxpayer's priority for more detailed supervision at each level of taxpayer compliance is ranked using Fuzzy AHP and TOPSIS based on criteria of dataset variables. The results show that C4.5 is the best performance classification and achieves preference value of 0.998; whereas the MLP algorithm results from the lowest preference value of 0.131. Alternative taxpayer A233 is the top priority taxpayer with a preference value of 0.433; whereas alternative taxpayer A051 is the lowest priority taxpayer with a preference value of 0.036.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Compliance Level of Motor Vehicle Taxpayer Classification;2023 14th International Conference on Information & Communication Technology and System (ICTS);2023-10-04

2. Academic ranking of Diyala university using hybrid decision-making approach;2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY;2023

3. Personalized Route Recommendation Using F-AHP-Express;Sustainability;2022-08-30

4. Energy-aware ACO-DNN optimization model for intrusion detection of unmanned aerial vehicle (UAVs);Journal of Ambient Intelligence and Humanized Computing;2022-08-12

5. The Fuzzy Analytic Hierarchy Process to measure qualitative weight factor and Fuzzy MCDM methods for ranking the best alternatives in team selection process;2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON);2022-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3