Analysis of SSVEP component acquisition from EEG signals for efficient target identification

Author:

Swetha Kalenahally R.ORCID,Krishnegowda Ravikumar G.ORCID,Venkataramu Shashikala S.ORCID

Abstract

The application of the brain-computer interface (BCI) is massively helpful and advantageous for disabled people. Moreover, BCI is an arrangement of software and hardware interface that provides a direct interaction between the human brain and computer devices. Therefore, in this article, A steady state visual evoked potential (SSVEP)-based BCI system is presented to identify SSVEP components from multi-channel electroencephalogram (EEG) data by minimizing background noise using an adaptive spatial filtering method. Here, the proposed adaptive spatial filtering-based SSVEP component extraction (ASFSCE) model improves reproducibility among multiple trails and identifies targets efficiently by optimizing the Eigenvalue problem. Along with that, the proposed ASFSCE model minimizes computational complexity from O(G<sup>2</sup>) to to get high target identification accuracy with faster execution. Performance results are measured using the SSVEP dataset. In this dataset, 11 subjects are used to perform experiments and 256-channel EEG data is taken. The efficiency of the proposed ASFSCE model is measured in terms of mean target detection accuracy and mean information transfer rate (ITR) in bits per minute. The average detection accuracy and ITR are evaluated by considering 23 trials for each subject. The obtained detection accuracy is 93.47% and ITR is 308.23 bpm.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the Capture of SSVEP Components from EEG Signals for Efficient Target Detection;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3