Optimization model for QoS based task scheduling in cloud computing environment

Author:

Potluri SirishaORCID,Rao Katta Subba

Abstract

Shortest job first task scheduling algorithm allocates task based on the length of the task, i.e the task that will have small execution time will be scheduled first and the longer tasks will be executed later based on system availability. Min- Min algorithm will schedule short tasks parallel and long tasks will follow them. Short tasks will be executed until the system is free to schedule and execute longer tasks. Task Particle optimization model can be used for allocating the tasks in the network of cloud computing network by applying Quality of Service (QoS) to satisfy user’s needs. The tasks are categorized into different groups. Every one group contains the tasks with attributes (types of users and tasks, size and latency of the task). Once the task is allocated to a particular group, scheduler starts assigning these tasks to accessible services. The proposed optimization model includes Resource and load balancing Optimization, Non-linear objective function, Resource allocation model, Queuing Cost Model, Cloud cost estimation model and Task Particle optimization model for task scheduling in cloud computing environement. The main objectives identified are as follows. To propose an efficient task scheduling algorithm which maps the tasks to resources by using a dynamic load based distributed queue for dependent tasks so as to reduce cost, execution and tardiness time and to improve resource utilization and fault tolerance. To develop a multi-objective optimization based VM consolidation technique by considering the precedence of tasks, load balancing and fault tolerance and to aim for efficient resource allocation and performance of data center operations. To achieve a better migration performance model to efficiently model the requirements of memory, networking and task scheduling. To propose a QoS based resource allocation model using fitness function to optimize execution cost, execution time, energy consumption and task rejection ratio and to increase the throughput. QoS parameters such as reliability, availability, degree of imbalance, performance and SLA violation and response time for cloud services can be used to deliver better cloud services.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-aware quantum-inspired genetic algorithm for workflow scheduling in hybrid clouds;Journal of Parallel and Distributed Computing;2024-09

2. Optimizing task scheduling in cloud computing: a hybrid artificial intelligence approach;Cogent Engineering;2024-03-20

3. Green Computing-Based Digital Waste Management and Resource Allocation for Distributed Fog Data Centers;Advances in Computational Intelligence and Robotics;2024-02-27

4. Optimal Resource Allocation in Cloud Computing Using Novel ACO-DE Algorithm;Lecture Notes in Networks and Systems;2024

5. Simulation of Cloud Computing Resource Allocation Optimization Model Based on Graph Neural Network;2023 International Conference on Internet of Things, Robotics and Distributed Computing (ICIRDC);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3