Identification of Rainfall Patterns on Hydrological Simulation Using Robust Principal Component Analysis

Author:

Shaharudin S.M.,Ahmad N.,Zainuddin N.H.,Mohamed N.S.

Abstract

A robust dimension reduction method in Principal Component Analysis (PCA) was used to rectify the issue of unbalanced clusters in rainfall patterns due to the skewed nature of rainfall data. A robust measure in PCA using Tukey’s biweight correlation to downweigh observations was introduced and the optimum breakdown point to extract the number of components in PCA using this approach is proposed. A set of simulated data matrix that mimicked the real data set was used to determine an appropriate breakdown point for robust PCA and  compare the performance of the both approaches. The simulated data indicated a breakdown point of 70% cumulative percentage of variance gave a good balance in extracting the number of components .The results showed a  more significant and substantial improvement with the robust PCA than the PCA based Pearson correlation in terms of the average number of clusters obtained and its cluster quality.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3