Network intrusion detection system: machine learning approach

Author:

Jaradat Ameera S.,Barhoush Malek M.,Easa Rawan S. Bani

Abstract

The main goal of intrusion detection system (IDS) is to monitor the network performance and to investigate any signs of any abnormalities over the network. Recently, intrusion detection systems employ machine learning techniques, due to the fact that machine learning techniques proved to have the ability of learning and adapting in addition to allowing a prompt response. This work proposes a model for intrusion detection and classification using machine learning techniques. The model first acquires the data set and transforms it in the proper format, then performs feature selection to pick out a subset of attributes that worth being considered. After that, the refined data set was processed by the Konstanz information miner (KNIME). To gain better performance and a decent comparative analysis, three different classifiers were applied. The anticipated classifiers have been executed and assessed utilizing the KNIME analytics platform using (CICIDS2017) datasets. The experimental results showed an accuracy rate ranging between (98.6) as the highest obtained while the average was (90.59%), which was satisfying compared to other approaches. The gained statistics of this research inspires the researchers of this field to use machine learning in cyber security and data analysis and build intrusion detection systems with higher accuracy.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Light Gradient Boosted Model for Network Intrusion Detection;2024 International Conference on Smart Systems for Electrical, Electronics, Communication and Computer Engineering (ICSSEECC);2024-06-28

2. A distributed platform for intrusion detection system using data stream mining in a big data environment;Annals of Telecommunications;2024-06-08

3. Unveiling the Landscape of Machine Learning and Deep Learning Methodologies in Network Security: A Comprehensive Literature Review;2024 2nd International Conference on Cyber Resilience (ICCR);2024-02-26

4. BBO-CFAT: Network Intrusion Detection Model Based on BBO Algorithm and Hierarchical Transformer;IEEE Access;2024

5. Analysis of Intrusion Detection System by Applying Machine Learning Using KNIME Tool;Lecture Notes in Electrical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3