PSO-ANN in preventing traffic collisions: a comparative study

Author:

Ashikuzzaman Md.,Akram Wasim,Anik Md. Mydul Islam,Hasan Mahamudul,Sawkat Ali Md.,Jabid Taskeed

Abstract

Traffic accident is a global threat which causes health and economic casualties all around the world. Due to the expansion of transportation systems, congestion can lead to spike road accident. Every year thousands of people have died due to traffic accidents. Various technologies have been adopted by modern cities to minimize traffic accidents. Therefore, to ensure people’s safety, the concept of the smart city has been introduced. In a smart city, factors like road, light, and weather conditions are important to consider to predict traffic mishap. Several machine learning models have been implemented in the existing literature to determine and predict traffic collision. But the accuracy is not enough and there exist a lot of challenges in determining the accident. In this paper, an approach of particle swarm optimization with artificial neural network (PSO-ANN) has been proposed to determine traffic collision using the dataset of the transport department of United Kingdom. The performance of PSO-ANN outperforms the existing machine learning model. PSO-ANN model can be adopted in the transportation system to counter traffic accident issues. Random Forest, Naıve Bayes, Nearest Centroid, K-Nearest Neighbor classification have been used to compare with the proposed PSO-ANN model.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing road safety with machine learning: Current advances and future directions in accident prediction using non-visual data;Engineering Applications of Artificial Intelligence;2024-11

2. Cumulative effect of driver’s historical violations on traffic accidents: New evidences from China;Journal of Transportation Safety & Security;2024-05-31

3. Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM;Physica A: Statistical Mechanics and its Applications;2023-09

4. Crude Oil Prices Predictions in India Using Machine Learning based Hybrid Model;2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3