An approach to categorize chest X-ray images using sparse categorical cross entropy

Author:

N. Chaithanya B.,J. Swasthika Jain T.,Ruby A. Usha,Parveen Ayesha

Abstract

The Coronavirus disease (COVID-19) pandemic is the most recent threat to global health. Reverse transcription-polymerase chain reaction (RT-PCR) testing, computed tomography (CT) scans, and chest X-ray (CXR) images are being used to identify Coronavirus, one of the most serious community viruses of the twenty-first century. Because CT scans and RT-PCR analyses are not available in most health divisions, CXR images are typically the most time-saving and cost-effective tool for physicians in making decisions. Artificial intelligence and machine learning have become increasingly popular because of recent technical advancements. The goal of this project is to combine machine learning, deep learning, and the health-care sector to create a categorization technique for detecting the Coronavirus and other respiratory disorders. The three conditions evaluated in this study were COVID-19, viral Pneumonia, and normal lungs. Using X-ray pictures, this research developed a sparse categorical cross-entropy technique for recognizing all three categories. The proposed model had a training accuracy of 91% and a training loss of 0.63, as well as a validation accuracy of 81% and a validation loss of 0.7108.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative exploration of activation functions for image classification in convolutional neural networks;i-manager's Journal on Artificial Intelligence & Machine Learning;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3