Sentiment analysis of Malayalam tweets using bidirectional encoder representations from transformers: a study

Author:

Mohan Elankath SyamORCID,Ramamirtham SunithaORCID

Abstract

Sentiment analysis on views and opinions expressed in Indian regional languages has become the current focus of research. But, compared to a globally accepted language like English, research on sentiment analysis in Indian regional languages like Malayalam are very low. One of the major hindrances is the lack of publicly available Malayalam datasets. This work focuses on building a Malayalam dataset for facilitating sentiment analysis on Malayalam texts and studying the efficiency of a pre-trained deep learning model in analyzing the sentiments latent in Malayalam texts. In this work, a Malayalam dataset has been created by extracting 2,000 tweets from Twitter. The bidirectional encoder representations from transformers (BERT) is a pretrained model that has been used for various natural language processing tasks. This work employs a transformer-based BERT model for Malayalam sentiment analysis. The efficacy of BERT in analyzing the sentiments latent in Malayalam texts has been studied by comparing the performance of BERT with various machine learning models as well as deep learning models. By analyzing the results, it is found that a substantial increase in accuracy of 5% for BERT when compared with that of Bi-GRU, which is the next bestperforming model.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Benchmarking Machine Learning Methods for Sentiment Analysis in Social Media: A Comprehensive Investigation;2024 IEEE Students Conference on Engineering and Systems (SCES);2024-06-21

2. MABSA: A curated Malayalam aspect based sentiment analysis dataset on movie reviews;Data in Brief;2023-10

3. Comparative Analysis of BERT Models for Sentiment Analysis on Twitter Data;2023 9th International Conference on Smart Computing and Communications (ICSCC);2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3