Accurate skin cancer diagnosis based on convolutional neural networks

Author:

Diab Amal G.,Fayez Nehal,El-Seddek Mervat Mohamed

Abstract

<span>Although melanoma is not the most common type of skin cancer, it is supposed to extend to other areas of the body if not early diagnosed. Melanoma is the deadliest form of skin cancer and accounts for about 75% of deaths associated with skin cancer. The present study introduces an automated technique for skin cancer prediction, detection, and diagnosis including trending noninvasive and nonionizing techniques that combines deep learning methods to diagnose melanoma with high accuracy. Computer-aided diagnosis (CAD) using medical images is utilized to distinguish benign and malignant tumors, which can assist physicians in early identification of symptoms, thus lowering the mortality rate. The CAD system consists of four phases; detection of the region of interest (RoI), using data augmentation techniques, processing RoI using convolutional neural network (CNN) to extract the most important features, and finally the extracted CNN features are input to a support vector machine (SVM) classifier to decode the two classes benign (B) and malignant (M). Two datasets, ISIC and CPTAC-CM, were utilized to train the CNNs. GoogleNet, ResNet-50, AlexNet, and VGG19 were investigated and compared. The accuracy of the proposed CAD system has reached 99.8% for ISIC database and 99.9% for CPTAC-CM database.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement of color image analysis using a hybrid artificial intelligence algorithm;EUREKA: Physics and Engineering;2024-05-27

2. Skin Cancer Identification Using Deep Learning Technique;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

3. Development of Dermatological Lesion Detection System Using EfficientNet with Fairness Evaluation;Lecture Notes in Networks and Systems;2024

4. Bat Optimized CNN For Skin Cancer Detection Using Deep Learning Approach;2023 International Conference on Energy, Materials and Communication Engineering (ICEMCE);2023-12-14

5. Feature Fusion with Attention Mechanism for Skin Cancer Classification;2023 6th International Conference on Electrical Information and Communication Technology (EICT);2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3