Control of prosthetic hand by using mechanomyography signals based on support-vector machine classifier
-
Published:2021-08-01
Issue:2
Volume:23
Page:1180
-
ISSN:2502-4760
-
Container-title:Indonesian Journal of Electrical Engineering and Computer Science
-
language:
-
Short-container-title:IJEECS
Author:
Ahmed Firas Saaduldeen,Al-jawady Noha Abed-Al-Bary
Abstract
<div>Prosthetic devices are necessary to help amputees achieve their daily activity in the natural way possible. The prosthetic hand has controlled by type of signals such as electromyography (EMG) and mechanomyography (MMG). The MMG signals have represented mechanical signals that generate during muscle contraction. These signals can be detected by accelerometers or microphones and any kind of sensors that can detect muscle vibrations. The contribution of the current paper is classifying hand gestures and control prosthetic hands depends on pattern recognition through accelerometer and microphone are to detect MMG signals. In addition to the cost of prosthetic hand less than other designs. Six subjects are involved. In this present work is the devices. In this study, two of them are amputee subjects. Each subject performs seven classes of movements. Pattern recognition (PR) is used to classify hand gestures. The wavelet packet transform (WPT) and root mean square (RMS) as features extracted from the signals and support vector machine (SVM) as a classifier. The average accuracy is 88.94% for offline tests and 84.45% for online tests. 3D printing technology is used in this study to build prosthetic hands.</div>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献