Control of prosthetic hand by using mechanomyography signals based on support-vector machine classifier

Author:

Ahmed Firas Saaduldeen,Al-jawady Noha Abed-Al-Bary

Abstract

<div>Prosthetic devices are necessary to help amputees achieve their daily activity in the natural way possible. The prosthetic hand has controlled by type of signals such as electromyography (EMG) and mechanomyography (MMG). The MMG signals have represented mechanical signals that generate during muscle contraction. These signals can be detected by accelerometers or microphones and any kind of sensors that can detect muscle vibrations. The contribution of the current paper is classifying hand gestures and control prosthetic hands depends on pattern recognition through accelerometer and microphone are to detect MMG signals. In addition to the cost of prosthetic hand less than other designs. Six subjects are involved. In this present work is the devices. In this study, two of them are amputee subjects. Each subject performs seven classes of movements. Pattern recognition (PR) is used to classify hand gestures. The wavelet packet transform (WPT) and root mean square (RMS) as features extracted from the signals and support vector machine (SVM) as a classifier. The average accuracy is 88.94% for offline tests and 84.45% for online tests. 3D printing technology is used in this study to build prosthetic hands.</div>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Descriptive Statistical Features-Based Improvement of Hand Gesture Identification;Biomedical Signal Processing and Control;2024-06

2. Benefit Through Vehicles Passing on Highways in Electrical Power Generation;International Journal of Electrical and Electronics Research;2024-02-26

3. Performance Enhancement of Speed Control for Induction Motor Using Dolphin Algorithm;Journal of Physics: Conference Series;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3