Author:
Idrissi Idriss,Azizi Mostafa,Moussaoui Omar
Abstract
<p>Deep learning (DL) models are nowadays broadly applied and have shown outstanding performance in a variety of fields, including our focus topic of "IoTcybersecurity". Deep learning-based intrusion detection system (DL-IDS) models are more fixated and depended on the trained dataset. This poses a problem for these DL-IDS, especially with the known mutation and behavior changes of attacks, which can render them undetected. As a result, the DL-IDShas become outdated. In this work, we present a solution for updating DL-ID Semploying a transfer learning technique that allows us to retrain and fine-tune pre-trained models on small datasets with new attack behaviors. In our experiments, we built CNN-based IDS on the Bot-IoT dataset and updated it on small data from a new dataset named TON-IoT. We obtained promising results in multiple metrics regarding the detection rate and the training between the initial training for the original model and the updated one, in the matter of detecting new attacks behaviors and improving the detection rate for some classes by overcoming the lack of their labeled data.</p>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献