Accelerating the update of a DL-based IDS for IoT using deep transfer learning

Author:

Idrissi Idriss,Azizi Mostafa,Moussaoui Omar

Abstract

<p>Deep learning (DL) models are nowadays broadly applied and have shown outstanding performance in a variety of fields, including our focus topic of "IoTcybersecurity". Deep learning-based intrusion detection system (DL-IDS) models are more fixated and depended on the trained dataset. This poses a problem for these DL-IDS, especially with the known mutation and behavior changes of attacks, which can render them undetected. As a result, the DL-IDShas become outdated. In this work, we present a solution for updating DL-ID Semploying a transfer learning technique that allows us to retrain and fine-tune pre-trained models on small datasets with new attack behaviors. In our experiments, we built CNN-based IDS on the Bot-IoT dataset and updated it on small data from a new dataset named TON-IoT. We obtained promising results in multiple metrics regarding the detection rate and the training between the initial training for the original model and the updated one, in the matter of detecting new attacks behaviors and improving the detection rate for some classes by overcoming the lack of their labeled data.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3