Clonal evolutionary particle swarm optimization for congestion management and compensation scheme in power system
-
Published:2019-11-01
Issue:2
Volume:16
Page:591
-
ISSN:2502-4760
-
Container-title:Indonesian Journal of Electrical Engineering and Computer Science
-
language:
-
Short-container-title:IJEECS
Author:
Mohd Ali N. Z.,Musirin I.,Mohamad H.
Abstract
This paper presents computational intelligence-based technique for congestion management and compensation scheme in power systems. Firstly, a new model termed as Integrated Multilayer Artificial Neural Networks (IMLANNs) is developed to predict congested line and voltage stability index separately. Consequently, a new optimization technique termed as Clonal Evolutionary Particle Swarm Optimization (CEPSO) was developed. CEPSO is initially used to optimize the location and sizing of FACTS devices for compensation scheme. In this study, Static VAR Compensator (SVC) and Thyristor Control Static Compensator (TCSC) are the two chosen Flexible AC Transmission System (FACTS) devices used in this compensation scheme. Comparative studies have been conducted between the proposed CEPSO and traditional Particle Swarm Optimization (PSO). Results obtained by the developed IMLANNs demonstrated high accuracy with respect to the targeted output. Consequently, the proposed CEPSO implemented for single objective in single unit of SVC and TCSC has resulted superior results as compared to the traditional PSO in terms of achieving loss reduction and voltage profile improvement.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献