Author:
Routray Sidheswar,Ray Arun Kumar,Mishra Chandrabhanu
Abstract
We develop an efficient MRI denoising algorithm based on sparse representation and curvelet transform with variance stabilizing transformation framework. By using sparse representation, a MR image is decomposed into a sparsest coefficients matrix with more no of zeros. Curvelet transform is directional in nature and it preserves the important edge and texture details of MR images. In order to get sparsity and texture preservation, we post process the denoising result of sparse based method through curvelet transform. To use our proposed sparse based curvelet transform denoising method to remove rician noise in MR images, we use forward and inverse variance-stabilizing transformations. Experimental results reveal the efficacy of our approach to rician noise removal while well preserving the image details. Our proposed method shows improved performance over the existing denoising methods in terms of PSNR and SSIM for T1, T2 weighted MR images.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献