Classifying toxicity in the Arabic Moroccan dialect on Instagram: a machine and deep learning approach

Author:

Rachidi RabiaORCID,Ouassil Mohamed AmineORCID,Errami MouaadORCID,Cherradi BouchaibORCID,Hamida SoufianeORCID,Silkan HassanORCID

Abstract

People crave interaction and connection with other people. Therefore, social media became the center of society’s life. Among the brightest social media platforms nowadays with a massive number of daily users there is Instagram, which is due to its distinctive features. The excessive revealing of personal life has put users in the spots of getting bullied and harassed and getting toxic revues from other users. Numerous studies have targeted social media to fight its harmful side effects. Nevertheless, most of the datasets that were already available were in English, the Arabic Moroccan dialect ones were not. In this work, the Arabic Moroccan dialect dataset has been extracted from the Instagram platform. Furthermore, feature extraction techniques have been applied to the collected dataset to increase classification accuracy. Afterward, we developed models using machine learning and deep learning algorithms to detect and classify toxicity. For the models’ evaluation, we have used the most used metrics: accuracy, precision, F1-score, and recall. The experimental results gave modest scores of around 70% to 83%. These results imply that the models need improvement due to the lack of available datasets and the preprocessing libraries to handle the Moroccan dialect of Arabic.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Arabic Text Readability Assessment: A Combined BERT and BiLSTM Approach;2024 International Conference on Circuit, Systems and Communication (ICCSC);2024-06-28

2. Developing an Efficient Toxic Comment Detector Using Machine Learning Techniques;Communications in Computer and Information Science;2024

3. COOL: Classification of Online Offensive Language Using Machine Learning and Deep Learning;IFIP Advances in Information and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3