An optimise ELM by league championship algorithm based on food images

Author:

Khalid Abdulateef Salwa,Naser Abdali Taj-Aldeen,Salman Alroomi Mohanad Dawood,Ahmed Altaha Mohamed Aktham

Abstract

This paper presents an optimisation of extreme learning machine by league championship algorithm based on food images. Extreme Learning Machine (ELM) is an effective classifier because of the performance which is higher than other classifiers’ aspects. However, some important drawbacks still work as a hindrance like failure of optimal selection weights for the weights of the input-hidden layer and the output of the threshold. In spite of the wide number of problem-solving attempts, there was no solution to be considered effective. This paper presents the approach of hybrid learning and the League Championship Algorithm is used by for the purpose of selecting the input weights and the thresholds outputs. The experimental outcomes showed that the performance of proposed technique is superior as compared according to different scenarios of the measures to benchmark. The proposed method has achieved an overall accuracy of 95% for UEC food 100 dataset and 94% for UEC food 256 dataset comparing with 94% and 80% for baseline approaches.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3