Author:
Lubis Arif Ridho,Prayudani Santi,Lubis Muharman,Khowarizmi Al
Abstract
The tea plants (Camellia Sinensis) are small tree species that use leaves and leaf buds to produce tea harvested through a monoculture system. It is an agriculture practice to cultivate one types of crop or livestock, variety or breed on a farm annually. Moreover, the emergence of pests, pathogens and diseases cause serious damages to tea plants significantly to its productivity and quality to optimum worst. All parts of the tea plant such as leaves, stems, roots, flowers and fruits are exposed to these harm lead to loss of yield 7 until 10% per year. The intensity of these attacks vary greatly on particular climate, the degree slope and the plant material used. Therefore, this study analyzes tea leaves as a common part used in recipes to create unique taste and flavor in tea production, especially in agro-industry. The decision making method used is Fuzzy Mamdani Inference as one of model with functional hierarchy with initial input based on established criteria. Fuzzy logic will provide tolerance to the set of value, so that small changes will not result in significant category differences, only affect the membership level on the variable value. Previous method using probabilities have shown 78% tea leaves have been attacked by category C (Gray Blight) while using Mamdani indicated 86% of tea leaves have been infected. In this case, this result pointed out that Fuzzy Mamdani Inferences have more optimal result compare to the previous method.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. In Image Classification of Skin Cancer Sufferers: Modification of K-Nearest Neighbor with Histogram of Oriented Gradients Approach;2022 1st International Conference on Information System & Information Technology (ICISIT);2022-07-27
2. Similarity Normalized Euclidean Distance on KNN Method to Classify Image of Skin Cancer;2021 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI);2021-12-16