Automated brain tumor classification using various deep learning models: a comparative study

Author:

Abbood Alaa Ahmed,Shallal Qahtan Makki,Fadhel Mohammed Abdulraheem

Abstract

The brain tumor, the most common and aggressive disease, leads to a very shorter lifespan. Thus, planning treatments is a crucial step in improving a patient's quality of life. In general, several image techniques such as CT, MRI, and ultrasound have been used for assessing tumors in the prostate, breast, lung, brain, etc. Primarily, MRI images are applied to detect tumors in the brain during this work. The enormous amount of data produced by the MRI scan thwarts tumor vs. non-tumor manual classification at a particular time. Unfortunately, with a small number of images, it has certain limitations (i.e., precise quantitative measurements). Therefore, an automated classification system is necessary to avoid human mortality. The automatic categorization of brain tumors in the surrounding tumor region is a challenging task concerning space and structural variability. Four deep learning models: AlexNet, VGG16, GoogleNet, and RestNet50, are used in this comparative study to classify brain tumors. Based on accuracy, the results showed that RestNet50 is the best model with an accuracy of 95.8%, while AlexNet has the fast performance with a processing time of 1.2 seconds. In addition, a hardware parallel processing unit (GPU) is employed for real-time purposes, where AlexNet (the fastest model) has a processing time of only 8.3 msec.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Information Systems,Signal Processing

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Development of Hypertuned Deep learning Frameworks for Detection and Severity Grading of Brain Tumor using Medical Brain MR images;Current Medical Imaging Formerly Current Medical Imaging Reviews;2024-04-26

2. MRI Brain Tumor Segmentation and Classification using different deep learning models;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

3. Deep Learning-Based Brain Tumor Prediction: An Analysis of Performance Evaluation of Convolutional Neural Network;2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter);2023-12-11

4. Diagnosis of focal liver lesions from ultrasound images using a pretrained residual neural network;Journal of Applied Clinical Medical Physics;2023-11-22

5. Vision transformer and its variants for image classification in digital breast cancer histopathology: a comparative study;Multimedia Tools and Applications;2023-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3